Exponential Functions

The exponential function f with base a is denoted by $f(x)=a^{x}$, where $\mathrm{a} \neq 1$, and x is any Real number. The function will always be positive.

Eg If the base is 2 and $x=4$, then the exponential function $f(4)=2^{4}=16$.
If the base is 10 then exponential values for integers are as follows:

-1	0.1
0	1
1	10
2	100
3	1000
4	10,000

Logarithmic Functions

These are the inverse function of the Exponential function.
For $x>0, a>0$, and $a \neq 1$ we have:

$$
f(x)=\log _{a}(x) \quad \text { if and only if } \mathrm{a}^{f(x)}=x
$$

ex1: the exponential equation $4^{3}=64$ could be written as a log equation as: $\log _{4} 64=3$.
ex2: the exponential equation $5^{-2}=1 / 25$ could be written as a log equation as: $\log _{5}(1 / 25)=-2$.

