
$\operatorname{Sin} \phi=a / c$
$\mathrm{c}=\mathrm{a} / \operatorname{Sin} \phi$
$\mathrm{D}=2 \mathrm{a}, \mathrm{R}=2 \mathrm{c}$
$c=\sqrt{\left(a^{2}+b^{2}\right)}$
example 1: The distance from the sound source to the microphone is 3.7 m . Find $\Delta \mathrm{d}$ if the direct sound path is 2.5 m from the wall.

$$
\begin{aligned}
\mathrm{c} & =\operatorname{sqrt}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \\
& =\operatorname{sqrt}\left([3.7 / 2]^{2}+2.5^{2}\right) \\
& =3.11 \mathrm{~m}
\end{aligned}
$$

therefore $\mathrm{R}=2 \times 3.11=6.22 \mathrm{~m} \quad$ and $\Delta \mathrm{d}=6.22-3.7=2.52 \mathrm{~m}$
example 2: The direct sound path is 4.5 m . If sound is reflected at an angle of 53°, what is the reflection path length?

$$
\begin{aligned}
& \phi_{2}=90-\phi_{3}=90-53=37^{\circ} \\
& c=a / \operatorname{Sin} \phi=(4.5 / 2) / \sin 37 \quad=3.74 \mathrm{~m} \\
& \therefore R=3.74 \times 2=7.48 \mathrm{~m}
\end{aligned}
$$

