TRIGONOMETRIC FUNCTIONS

Sine $\theta=\frac{\text { OPPOSITE }}{\text { HYPOTENUSE }}$
$\operatorname{Sin}^{-1}=1 / \operatorname{Sin}$
Cosine $\theta=\frac{\text { ADJACENT }}{\text { HYPOTENUSE }}$

Tangent $\theta=\frac{\text { OPPOSITE }}{\text { ADJACENT }}$
$\operatorname{Tan}^{-1}=1 /$ Tan

Eg Sin of $30^{\circ}=0.5$ (ie Opposite is exactly $1 / 2$ the length of the Hypotenuse).
Sin^{-1} of 0.5 is 30°.

$$
r=\sqrt{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}
$$

Here you can see how the sine values around a circle generate a (you guessed it) Sinewave:

Example:
A corner bass trap has a front surface of 0.61 m

This is a right angle isosceles triangle, so the angles at each side are equal, and $\mathrm{a}=\mathrm{b}$.

We could use the Pythagoras theorem to find length a, but it is much simpler to use a trig. formula:
$\sin \theta=\mathrm{opp} /$ hyp so;
$a=\operatorname{Sin} 45 \times 0.61$
$=0.7071 \times 0.61$
$=0.43 \mathrm{~m}$

